Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Funct Integr Genomics ; 24(2): 44, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421529

RESUMEN

By 2050, the global population is projected to exceed 9.5 billion, posing a formidable challenge to ensure food security worldwide. To address this pressing issue, mutation breeding in horticultural crops, utilizing physical or chemical methods, has emerged as a promising biotechnological strategy. However, the efficacy of these mutagens can be influenced by various factors, including biological and environmental variables, as well as targeted plant materials. This review highlights the global challenges related to food security and explores the potential of mutation breeding as an indispensable biotechnological tool in overcoming food insecurity. This review also covers the emergence of CRISPR-Cas9, a breakthrough technology offering precise genome editing for the development of high-yield, stress-tolerant crops. Together, mutation breeding and CRISPR can potentially address future food demands. This review focuses into these biotechnological advancements, emphasizing their combined potential to fortify global food security in the face of a booming population.


Asunto(s)
Edición Génica , Fitomejoramiento , Agricultura , Mutación , Productos Agrícolas/genética
2.
Mol Cell Biochem ; 479(2): 283-296, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37059893

RESUMEN

The purpose of this study was to determine whether or not there were significant differences in the antibacterial potential of Thuja occidentalis collected from four distinct geographical sites, namely Chamba (Himachal Pradesh, India), Jalandhar (Punjab, India), Aurangabad (Bihar, India) and Kakching (Manipur, India). The plant extracts were prepared in three different solvents: ethanol, methanol, and acetone. The antibacterial potential of the plant extracts was tested against five different bacterial species using well diffusion test. The minimum inhibitory and bactericidal concentrations of the plant sample exhibiting maximum zone of inhibition against different bacterial strains were calculated. Further, the total phenols, flavonoids, and antioxidant efficacy (using DPPH assay) were also analysed biochemically. The activity of different antioxidant enzymes including SOD, CAT and APX were also recorded as these enzymes protect the cells from free radical damage. GC-MS analysis was also performed on all plant extracts to identify the bioactive components. The results showed that the T. occidentalis collected from the Kakching, Manipur, East side of India showed the highest zone of inhibition against all the bacterial strains, followed by Chamba, Jalandhar, and lastly Aurangabad. To analyse the impact of phytochemicals on the antibacterial efficacy, a correlation was drawn between the biochemical parameters and zone of inhibition using Karl Pearson's method. Most bacterial species demonstrated a positive correlation between antibacterial effectiveness (zone of inhibition) and biochemical markers. The GC-MS study revealed positive correlation between zone of inhibition and peak area percentages of α-Pinene, ß-caryophyllene, Germacrene-D, and Humulene in all bacterial species indicating that these chemicals may play a key role in the bactericidal potential of T. occidentalis. Based on the results of this investigation, it is evident that the antibacterial effectiveness of T. occidentalis varies with its geographical location which may be attributed to the differences in the phytochemical makeup.


Asunto(s)
Fabaceae , Thuja , Antioxidantes/farmacología , India , Antibacterianos/farmacología , Extractos Vegetales/farmacología
3.
Bioengineered ; 14(1): 2260919, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37750751

RESUMEN

The presence of pharmaceutical compounds in wastewater due to an increase in industrialization and urbanization is a serious health concern. The demand for diverse types of pharmaceutical compounds is expected to grow as there is continuous improvement in the global human health standards. Discharge of domestic pharmaceutical personal care products and hospital waste has aggravated the burden on wastewater management. Further, the pharmaceutical water is toxic not only to the aquatic organism but also to terrestrial animals coming in contact directly or indirectly. The pharmaceutical wastes can be removed by adsorption and/or degradation approach. Nanoparticles (NPs), such as 2D layers materials, metal-organic frameworks (MOFs), and carbonaceous nanomaterials are proven to be more efficient for adsorption and/or degradation of pharmaceutical waste. In addition, inclusion of NPs to form various composites leads to improvement in the waste treatment efficacy to a greater extent. Overall, carbonaceous nanocomposites have advantage in the form of being produced from renewable resources and the nanocomposite material is biodegradable either completely or to a great extent. A comprehensive literature survey on the recent advancement of pharmaceutical wastewater is the focus of the present article.


Asunto(s)
Nanocompuestos , Aguas Residuales , Animales , Humanos , Nanotecnología , Agua , Preparaciones Farmacéuticas
4.
Environ Res ; 229: 116023, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121351

RESUMEN

A field study was conducted to investigate the influence of MgO-NPs priming on growth and development of mustard. Priming of mustard seeds before sowing with MgO-NPs at concentration 10, 50, 100, and 150 µg/ml enhanced the vegetative parameters of plants, with considerable increase in leaf area. MgO-NPs exposure increased the photosynthetic pigment accumulation in mustard that led to increase in biomass, carbohydrate content, and the yield in terms of total grain yield. Increased chlorophyll has simultaneously increased the oxidative stress in plants, and hence stimulated their antioxidant potential. A consistent increase was observed in the content of mustard polyphenols and activity of SOD, CAT, and APX on MgO-NPs exposure. MgO-NPs induced oxidative stress further reduced the protein content and bioavailability in mustard. We further, evaluated the influence of MgO-NPs on the quality of mustard harvested seeds. The seeds harvested from nanoprimed mustard possessed increased antioxidant potential and reduced oxidative stress. The carbohydrate and protein accumulation was significantly enhanced in response to nanopriming. Reduced chlorophyll content in seeds obtained from nanoprimed mustard indicated their potential for disease resistance and stability on long term storage. Therefore, the seeds harvested from MgO-NPs primed mustard were biochemically rich and more stable. Therefore, MgO-NPs priming can be potentially used as a novel strategy for growth promotion in plants where leaves are economically important and a strategy to enhance the seed quality under long term storage conditions.


Asunto(s)
Óxido de Magnesio , Nanopartículas , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Antioxidantes/metabolismo , Planta de la Mostaza/metabolismo , Semillas/metabolismo , Clorofila/metabolismo , Carbohidratos , Nanopartículas/química
5.
Physiol Mol Biol Plants ; 29(12): 1897-1913, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222280

RESUMEN

Green synthesis of NPs is preferred due to its eco-friendly procedures and non-toxic end products. However, unintentional release of NPs can lead to environmental pollution affecting living organisms including plants. NPs accumulation in soil can affect the agricultural sustainability and crop production. In this context, we report the morphological and biochemical response of spinach nanoprimed with MgO-NPs at concentrations, 10, 50, 100, and 150 µg/ml. Nanopriming reduced the spinach root length by 14-26%, as a result a reduction of 20-74% in the length of spinach shoots was observed. The decreased spinach shoot length inhibited the chlorophyll accumulation by 21-55%, thus reducing the accumulation of carbohydrates and yield by 46 and 49%, respectively. The reduced utilization of the total absorbed light further enhanced ROS generation and oxidative stress by 32%, thus significantly altering their antioxidant system. Additionally, a significant variation in the accumulation of flavonoid pathway downstream metabolites myricitin, rutin, kaempferol-3 glycoside, and quercitin was also revealed on MgO-NPs nanopriming. Additionally, NPs enhanced the protein levels of spinach probably as an osmoprotectant to regulate the oxidative stress. However, increased protein precipitable tannins and enhanced oxidative stress reduced the protein digestibility and solubility. Overall, MgO-NPs mediated oxidative stress negatively affected the growth, development, and yield of spinach in fields in a concentration dependent manner. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01391-9.

6.
Recent Pat Anticancer Drug Discov ; 18(2): 114-124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770413

RESUMEN

BACKGROUND: Lung cancer is one of the major killers among different kinds of cancer. Being a silent developer, the earliest detection and treatment of lung cancer is a challenging task. The existing therapeutic agents have lower efficacy. Nanotechnology can overcome the challenges posed by conventional approaches to ensure reliable diagnosis and treatment. OBJECTIVES: Various patents on nano diagnosis and nano delivery aspects of lung cancer were analyzed to compile the information in a nutshell. The increasing trend of patents on nano-based solutions for lung cancer opens new opportunities. METHODS: Google patent and Science Citation Index Expanded data sources were used to obtain relevant literature on nano-detection and nano-drug delivery for lung cancer. Various keywords were used to ensure the inclusion of recent and most relevant information in each section. The gist of the patent is described with suitable subsections. RESULTS: Thorough review of recent patents on nanotechnology-based theranostics of lung cancer was conducted. Nanotechnology-based diagnosis and treatment of lung cancer overcome the drawbacks of traditional treatments with better stability, targeted drug delivery, controlled sustained drug release, ease of membrane transport, and better therapeutic efficacy/safety ratio to obtain optimized clinical results. Further, it is cost-effective and accurate. CONCLUSION: Overall, the application of nanotechnology in lung cancer treatment and diagnosis is a futuristic approach. Furthermore, NPs-based in vitro and in vivo detection and nano drug delivery to lungs need to be rigorously pursued for a sustainable solution.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Nanoestructuras , Humanos , Patentes como Asunto , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos , Nanotecnología/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico
8.
Environ Sci Pollut Res Int ; 29(9): 13635-13645, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34591246

RESUMEN

Nanoparticles interact with plants to induce a positive, negative, or neutral effect on their growth and development. In this study, we document the positive influence of magnesium oxide (MgO) nanoparticles (NPs) on the morpho-biochemical parameters of Macrotyloma uniflorum (horse gram). Horse gram is a protein and polyphenol-rich legume crop. It is an important part of the human diet and nutrition. When exposed to MgO-NPs, a significant increment in the shoot-root length, fresh biomass, and chlorophyll content of horse gram was evident. Furthermore, there was a 4-20 and 18-127% increase in the accumulation of carbohydrate and protein content on MgO-NP exposure. The antioxidant potential was enhanced by 5-19% on NP treatment as a result of the increase in the accumulation of total polyphenolics. Total phenols and flavonoids were enhanced by 7-20 and 50-84% in the presence of MgO-NPs. The enzyme activity of SOD, CAT, and APX was also enhanced in MgO-NP-exposed horse gram. The observed alterations were also justified by the Pearson correlation. Overall, the MgO-NP-induced morpho-biochemical alterations in horse gram indicated their probable role as a nano-fertilizer. However, it further warrants the need to extensively investigate the responses of various other plant types to MgO-NPs before industry scale application.


Asunto(s)
Fabaceae , Nanopartículas del Metal , Nanopartículas , Antioxidantes , Óxido de Magnesio , Verduras
9.
Curr Pollut Rep ; : 1-21, 2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33344145

RESUMEN

PURPOSE OF REVIEW: Environmental pollutants are threat to human beings. Pollutants can lead to human health and environment hazards. The purpose of this review is to summarize the work done on detection of environmental pollutants using DNA nanosensors and challenges in the areas that can be focused for safe environment. RECENT FINDINGS: Most of the DNA-based nanosensors designed so far use DNA as recognition element. ssDNA, dsDNA, complementary mismatched DNA, aptamers, and G-quadruplex DNA are commonly used as probes in nanosensors. More and more DNA sequences are being designed that can specifically detect various pollutants even simultaneously in complex milk, wastewater, soil, blood, tap water, river, and pond water samples. The feasibility of direct detection, ease of designing, and analysis makes DNA nanosensors fit for future point-of-care applications. SUMMARY: DNA nanosensors are easy to design and have good sensitivity. DNA component and nanomaterials can be designed in a controlled manner to detect various environmental pollutants. This review identifies the recent advances in DNA nanosensor designing and opportunities available to design nanosensors for unexplored pathogens, antibiotics, pesticides, GMO, heavy metals, and other toxic pollutant.

10.
3 Biotech ; 10(10): 431, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32999809

RESUMEN

Naringenin exposure altered auxin redistribution via VrPIN1 leading to morphological alterations and significantly reduced the protein precipitable tannins that further enhanced the protein accumulation and bioavailability. Flavonoid exposure is known to affect the antioxidant profile of legumes. However, a detailed study evaluating the effect of flavonoid naringenin on morphology and biochemical profile of legume is lacking. The present study is a novel report of improved in planta protein bioavailability and antioxidant potential of legume mungbean on naringenin exposure. The quantitative evaluation revealed significant protein accumulation (64-122 µg/g FW) on naringenin exposure. Further, an increase in protein solubility and digestibility compared to control was evident. Naringenin mediated altered α-amylase activity improved the mungbean seed germination rate. Naringenin induced auxin redistribution and altered PIN formed transcript expression reduced lateral root density and increased stem length that was subsequently reverted on exogenous indole acetic acid application. Naringenin enhanced polyphenolic accumulation and improved the antioxidant potential of mungbean. Additionally, the responsiveness of the early gene of the flavonoid biosynthetic pathway, Chalcone isomerase to naringenin concentration was revealed indicating a probable feedback regulation. Further, the presence of alternate liquiritigenin biosynthesis was also evident. The present study, thus reveals the probable potential of phytochemical naringenin towards agricultural sustainability in the changing environmental conditions.

11.
Mol Biotechnol ; 59(11-12): 499-517, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28828714

RESUMEN

Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.


Asunto(s)
Productos Agrícolas/genética , Ingeniería Genética/métodos , Desnutrición Proteico-Calórica/prevención & control , Productos Agrícolas/fisiología , Humanos , Desnutrición Proteico-Calórica/genética
12.
J Exp Bot ; 66(13): 3907-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25954046

RESUMEN

This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 µg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 µg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Carbono/metabolismo , Diterpenos de Tipo Kaurano/biosíntesis , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación , Giberelinas/farmacología , Hipocótilo/ultraestructura , Fenotipo , Plantas Modificadas Genéticamente , Polen/efectos de los fármacos , Semillas/efectos de los fármacos , Stevia/metabolismo
13.
Gene ; 539(2): 250-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24518812

RESUMEN

The transcript expression of a gene SrUGT85C2 has been documented for direct relation with steviol glycoside content in Stevia plant. Steviol glycoside and gibberellin biosynthetic routes are divergent branches of methyl erythritol-4 phosphate (MEP) pathway. So, SrUGT85C2 might be an influencing gibberellin content. Hence in the present study, transgenic Arabidopsis thaliana overexpressing SrUGT85C2 cDNA from Stevia rebaudiana was developed to check its effect on gibberellin accumulation and related plant growth parameters. The developed transgenics showed a noteworthy decrease of 78-83% in GA3 content. Moreover, the transgenics showed a gibberellin deficient phenotype comprising stunted hypocotyl length, reduced shoot growth and a significant fall in relative water content. Transgenics also showed 17-37 and 64-76% reduction in chlorophyll a and chlorophyll b contents, respectively. Reduction in photosynthetic pigments could be responsible for the noticed significant decrease in plant biomass. Like steviol glycoside and gibberellin biosynthesis, chlorophyll biosynthesis also occurs from the precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of MEP pathway in the plastids. The observed downregulated expression of genes encoding MEP pathway enzymes geranyl geranyl diphosphate synthase (GGDPS), copalyl diphosphate synthase (CDPS), kaurenoic acid oxidase (KAO), chlorophyll synthetase and chlorophyll a oxygenase in transgenics overexpressing SrUGT85C2 might be responsible for the reduction in gibberellins as well as chlorophyll. This study has documented for the first time the regulatory role of SrUGT85C2 in the biosynthesis of steviol glycoside, gibberellins and chlorophyll.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Eritritol/análogos & derivados , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Stevia/metabolismo , Fosfatos de Azúcar/metabolismo , Transgenes/fisiología , Arabidopsis/metabolismo , Clorofila/metabolismo , Clorofila A , Diterpenos de Tipo Kaurano/metabolismo , Eritritol/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicósidos/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Mol Biol Rep ; 41(3): 1741-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24430293

RESUMEN

Steviol glycoside and gibberellin biosynthetic routes are known as divergent branches of a common origin in Stevia. A UDP-glycosyltransferase encoded by SrUGT74G1 catalyses the conversion of steviolbioside into stevioside in Stevia rebaudiana leaves. In the present study, transgenic Arabidopsis thaliana overexpressing SrUGT74G1 cDNA from Stevia were developed to check the probability of stevioside biosynthesis in them. However, stevioside accumulation was not evident in transgenics. Also, the transgenic Arabidopsis showed no change in GA3 content on SrUGT74G1 overexpression. Surprisingly, significant accumulation of catechin was noticed in transgenics. The transgenics showed a considerable increase in shoot length, root length and rosette area. An increase in free radical scavenging activity of transgenics was noticed. Moreover, the seed yield of transgenics was also increased by 6-15% than control. Additionally, variation in trichome branching pattern on leaf surface of transgenics was observed. The trichome branching pattern was also validated by exogenous catechin exposure (10, 50, 100 ng ml(-1)) to control plants. Hence, present study reports the probable role of SrUGT74G1 from Stevia in catechin accumulation of transgenic Arabidopsis thaliana. Thus, detailed study in present perspective has revealed the role of Stevia SrUGT74G1 gene in trichome branching pattern, improved vegetative growth, scavenging potential and seed yield by catechin accumulation in transgenic Arabidopsis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Catequina/metabolismo , Glicosiltransferasas/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Diterpenos de Tipo Kaurano/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/biosíntesis , Glicosiltransferasas/biosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Stevia/genética
15.
PLoS One ; 8(9): e74731, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023961

RESUMEN

BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.


Asunto(s)
Agrobacterium/metabolismo , Diterpenos de Tipo Kaurano/biosíntesis , Ingeniería Genética/métodos , Glicósidos/biosíntesis , Interferencia de ARN , Stevia/genética , Stevia/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ingeniería Genética/instrumentación , Giberelinas/metabolismo , Glucuronosiltransferasa/química , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Glicósidos/metabolismo , Modelos Moleculares , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Conformación Proteica , Jeringas
16.
Sci Total Environ ; 461-462: 462-8, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23747561

RESUMEN

Nanotechnology has the potential to revolutionize agriculture field. Towards this effort, carbon nanotubes have recently been reported to induce growth enhancement of tobacco cells. In this study, exposure to 24 nm size gold nanoparticles (GNPs) at 10 µg/ml concentration was found to enhance the total seed yield of Arabidopsis thaliana by 3 times over the control. In addition, 24 nm size GNP exposure at both 10 and 80 µg/ml concentrations has significantly improved seed germination rate, vegetative growth and free radical scavenging activity. A considerable correlation was found between expression of key plant regulatory molecules, microRNAs (miRs) and seed germination, growth and antioxidant potential of A. thaliana on GNP exposure. This is the first report showing GNPs as a promising tool to enhance seed yield of plants.


Asunto(s)
Arabidopsis/efectos de los fármacos , Oro/farmacología , Nanopartículas del Metal/química , Semillas/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/metabolismo , Germinación/efectos de los fármacos , Oro/química , MicroARNs/metabolismo , Nanotecnología/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/fisiología
17.
Crit Rev Food Sci Nutr ; 52(11): 988-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22823347

RESUMEN

Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glucósidos/biosíntesis , Glicósidos/biosíntesis , Stevia/química , Clonación Molecular , Diterpenos de Tipo Kaurano/genética , Diterpenos de Tipo Kaurano/farmacología , Glucósidos/genética , Glucósidos/farmacología , Glicósidos/genética , Glicósidos/farmacología , Hojas de la Planta/química , Transducción de Señal
18.
Rev Environ Contam Toxicol ; 215: 39-121, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22057930

RESUMEN

Nanotechnology is a fast growing field that provides for the development of materials that have new dimensions, novel properties, and a broader array of applications. Various scientific groups are keen about this technology and are devoting themselves to the development of more, new, and better nanomaterials. In the near future, expectations are that no field will be left untouched by the magical benefits available through application of nanotechnology. Presently, there is only limited knowledge concerning the toxicological effects of NPs. However, it is now known that the toxic behavior of NPs differ from their bulk counterparts. Even NPs that have the same chemical composition differ in their toxicological properties; the differences in toxicity depend upon size, shape, and surface covering. Hence, before NPs are commercially used it is most important that they be subjected to appropriate toxicity evaluation. Among the parameters of NPs that must be evaluated for their effect on toxicity are surface charges, types of coating material, and reactivity of NPs. In this article, we have reviewed the literature pertinent to the toxicity of metal oxide NPs, metallic NPs, quantum dots (QDs), silica (SiO2) NPs, carbon nanotubes (CNTs), and certain other carbon nanomaterials (NMs). These NPs have already found a wide range of applications around the world. In vitro and in vivo studies on NPs have revealed that most are toxic to animals. However, their toxic behavior varies with their size, shape, surface charge, type of coating material and reactivity. Dose, route of administration, and exposure are critical factors that affect the degree of toxicity produced by any particular type of NP. It is for this reason that we believe a careful and rigorous toxicity testing is necessary before any NP is declared to be safe for broad use. We also believe that an agreed upon testing system is needed that can be used to suitably, accurately, and economically assess the toxicity of NPs. NPs have produced an array of different toxic effects in many different types of in vivo and in vitro studies. The types of effects that NPs have produced are those on the pulmonary, cardiac, reproductive, renal and cutaneous systems, as well as on various cell lines. After exposures, significant accumulations of NPs have been found in the lungs, brain, liver, spleen, and bones of test species. It has been well established that the degree of toxicity produced by NPs is linked to their surface properties. Soluble NPs are rendered toxic because of their constituents; however, the situation is entirely different for insoluble NPs. Stable metal oxides do not show any toxicity, whereas metallic NPs that have redox potential may be cytotoxic and genotoxic. The available data on NP toxicity is unfortunately limited, and hence, does not allow scientists to yet make a significant quantitative risk assessment of the safety of synthesized NPs. In this review, we have endeavored to illustrate the importance of having and using results from existing nanotoxicological studies and for developing new and more useful future risk assessment systems. Increased efforts of both an individual and collective nature are required to explore the future pros and cons of nanotechnology.


Asunto(s)
Nanopartículas/toxicidad , Nanotecnología , Animales , Contaminación Ambiental/efectos adversos , Humanos , Metales/toxicidad , Nanotubos de Carbono/toxicidad , Óxidos/toxicidad , Puntos Cuánticos , Dióxido de Silicio/toxicidad
19.
Genomics Proteomics Bioinformatics ; 9(6): 211-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22289477

RESUMEN

MicroRNAs (miRNAs) usually contain 19-24 nucleotides and have been identified as important eukaryotic gene regulators. Applications of various computational approaches have simplified the task by predicting miRNAs from available sequence data sources. In this study, we identified a conserved miR414 from a computational analysis of EST sequence data available from Stevia rebaudiana. In addition, we also identified six conserved miRNAs namely miR169, miR319, miR414, miR164, miR167 and miR398 using stem-loop RT-PCR analysis. Hence, miR414 was commonly identified using both methods. The expression analysis of these miRNAs documented their roles in growth and development of Stevia. Furthermore, the detected miRNAs were found to target genes involved in plant growth, development, metabolism and signal transduction. This is the first study reporting these conserved miRNAs and their expression in Stevia.


Asunto(s)
MicroARNs/metabolismo , Stevia/genética , Secuencia Conservada/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , MicroARNs/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Stevia/metabolismo
20.
Genomics Proteomics Bioinformatics ; 9(6): 183-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22289475

RESUMEN

Small RNAs (sRNAs) are 18-30 nt non-coding regulatory elements found in diverse organisms, which were initially identified as small double-stranded RNAs in Caenorhabditis elegans. With the development of new and improved technologies, sRNAs have also been identified and characterized in plant systems. Among them, micro RNAs (miRNAs) and small interfering RNAs (siRNAs) are found to be very important riboregulators in plants. Various types of sRNAs differ in their mode of biogenesis and in their function of gene regulation. sRNAs are involved in gene regulation at both transcriptional and post-transcriptional levels. They are known to regulate growth and development of plants. Furthermore, sRNAs especially plant miRNAs have been found to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. Therefore, in the present review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant sRNAs and their responses to various abiotic stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Plantas/genética , ARN de Planta/genética , Estrés Fisiológico/genética , Animales , Caenorhabditis elegans/genética , MicroARNs/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...